Structural and electronic properties of small titanium clusters: A density functional theory and anion photoelectron spectroscopy study
نویسندگان
چکیده
Density functional theory calculations using the generalized-gradient approximation have been carried out on the structural and electronic properties of Tin 2 and Tin clusters for n53–8 and 13. Many low-lying states, of different spins and geometries, were found for each Tin 2 and Tin species. We observed that the calculated density of states ~DOS! and the adiabatic electron binding energies for the ground state of a given anion are in good agreement with experimental photoelectron spectroscopy ~PES! data, lending credence to the assignments of the ground state structures. Comparison between the calculated DOS and the PES data for other low-lying states made it possible to affirm contributions of these states to the spectra, allowing the characterization of the ensemble or composition of a given Tin 2 system. We found that all the clusters possess highly compact structures, and Ti7 and Ti13 have distorted pentagonal bipyramidal and icosahedral structures, respectively. From the ground state spin states, insight into the magnetic properties of the clusters and their evolution with size was also obtained. Small Ti clusters with n,5 are highly magnetic, but the magnetic moment drops rapidly with size. © 2003 American Institute of Physics. @DOI: 10.1063/1.1532000#
منابع مشابه
Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملDensity Functional Study on Stability and Structural Properties of Cu n clusters
In this research DFT/B3LYP method has been employed to investigate the geometrical structures,relative stabilities, and electronic properties of Cun (n=3–10) clusters for clarifying the effect of sizeon the properties. Through a careful analysis of the successive binding energies, second-orderdifference of energy and the highest occupied-lowest unoccupied molecular orbital energy gaps as afunct...
متن کاملInvestigation of Nickle nanoclusters properties by density functional theory
Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کامل